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A N U M E R I C A L  S T U D Y  OF A VISCOUS S H O C K  L A Y E R  ON A P L A T E  

T. V. Poplavskaya and V. N. Vetlutskii  UDC 532.526 

Jus t i f i ca t ion  o f  t h e  M o d e l  of  a Full Viscous Shock Layer  (FVSL).  The hypersonic flow around 
a flat plate with a sharp leading edge at zero incidence is a classical problem in viscous-fluid mechanics. A 
flat plate in rarefied gas flow gives rise to a wide range of flow regimes. They vary from the regime in which 
individual molecular collisions at the leading edge are described by the kinetic theory to the downstream 
continuum regime of the classical boundary layer. Various models for the rarefied hypersonic flow around a 
plate with a sharp leading edge are presented in [1-3]. 

The general model for the flow around a plate using the results of [1-4] is shown in Fig. 1. There is 
a small region of free-molecular flow immediately at the leading edge of the plate. Next follows a continuum 
region in which the boundary layer generated by viscous phenomena on the surface and the shock wave 
(SW) interact and merge to such an extent that it is impossible to draw a distinct boundary between them. 
This "merged" layer is asymptotically transformed to the region of strong interaction. It is here and further 
downstream that the parameters behind the SW can be calculated from the generalized Rankine-Hugoniot 
relations. In the strong-interaction region, the inviscid-flow zone between the SW and the boundary layer 
cannot be clearly distinguished, or this region is small. Further downstream on the plate, a weak-interaction 
region forms in which inviscid flow plays a substantial role. 

Experimental investigations [5-7] deal mainly with the merged layer, which is the intermediate region 
between the classical hypersonic boundary layer located downstream and the kinetic model of the flow at the 
leading edge. McCroskey et al. [4] found that the strong-interaction model has a certain upstream limit of 
applicability where the boundary layer and the shock wave merge. This is the case for V = Moox/~/Rez - 
0.1-0.2, where V is a rarefaction parameter that is most suitable for determining the upstream boundary of 
the strong-interaction region and the computation domain of the viscous shock layer, and C is the Chapman- 
Rubezin constant). 

In the present paper, we consider hypersonic flow around a plate with a sharp leading edge within 
the framework of the model of a viscous shock layer for values of the rarefaction parameter V of from 0.1 
to 0.15, for which the boundary layer merges with the SW, to lower values of V for which the boundary 
layer is separated from the SW by an inviscid flow region (V < 0.1). The FVSL equations describe the entire 
flow region between the body and the SW. They include all terms of Euler equations and of boundary-layer 
equations. The advantages of the viscous shock-layer model include 
- -  the calculation of flows with moderately low Reynolds numbers and of flows under conditions of shock- 
wave-boundary-layer interaction, which is impossible in the classical boundary-layer theory; 
- -  the possibility of avoiding the search for external data for the boundary layer; 
- -  unified calculation of the entire flow field in the regions of both strong and weak interaction; 
- -  the use of a marching approach to solve the FVSL equations; 
- -  economy in comparison with the Navier-Stokes model. 

The viscous shock-layer model has been widely used recently for aerohydrodynamic and reentry 
problems. In most papers [8-12], smooth blunted bodies have been considered. We are unaware of any 
publications on hypersonic flow around slender bodies with a sharp leading edge within the framework 
of the viscous shock layer model. Hayes and Probstein [13] obtained approximate analytical solutions of 
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the hypersonic-boundary-layer equations for the regions of strong and weak interaction separately. Pan and 
Probstein [14] derived correlation formulas for the pressure and heat transfer on the body surface for air in 
the merged layer and in the strong-interaction region. Shorenstein and R. F. Probstein [15] derived empirical 
functions approximating the calculation results for the shock position and density on the shock-wave surface 
in a local-similar approximation in the merged layer. 

Rudman and Rubin [16], using the system of equations describing the boundary layer, the SW 
structure, and the inviscid core of the flow, considered the hypersonic viscous interaction on slender bodies 
with a sharp laming edge. Although the focus was on the study of the continuum region (merged layer) at the 
leading edge, where the rarefaction parameter is V ~ l, Rudman and Rubin believe that the suggested theory 
is also applicable for lower values of V that correspond to the beginning of the strong-interaction region. 

In the present paper, all characteristics (velocity, pressure, density, temperature, and skin-friction and 
heat-transfer coefficients) of the flow around a plate at zero incidence are calculated within the framework 
of the viscous shock-layer model over wide ranges of Mach and Reynolds numbers, and the influence of the 
latter on the flow parameters is studied. 

F o r m u l a t i o n  of  t h e  P r o b l e m .  Let us consider hypersonic flow around a plate with a sharp leading 
edge at zero incidence. We write the FVSL equations in the Cartesian coordinate system (x, y) in which the 
x coordinate is directed along the plate surface and y is normal to it. By analogy with [8], these equations 
can be obtained in the form 

Opu ~ +  
Oz 

Ou) OP Opv Ou Ou 1 0 #-~V + = O, 
= O, pu-~-s + pv Oy ReL Oy 

Ov Ov 4 1 0 , "I/#Ov\ OP 
pU-~x + pv-~-y 3 ReL Oy \ Oy ) + ~ = O, (1) 

OT OT 1 1 0 I -- OT'~ 1 1)M~#/Ou\2_~ 1:_.| 
cppU-~x +cppV oy PrReLOy \ Oy) - ~[eL ( 7 -  \Oy) 

( \ 2 ( OP vOP'~ 1 

u-~z '~y ) .~M~ pl 
- ? - l )  Moo + =0,  p _  r,  

where u and v are the velocity components in the z and y directions, P is the pressure, T is the temperature, 
Pr = #ooCpoo/k~ is the Prandtl  number, and ReL = pooU~L/#oo is the Reynolds number determined from 
the free-stream parameters and the model length L. The velocity components are made dimensionless with 
respect to the free-stream velocity U~, the pressure is referred to the doubled velocity head p~U 2, the 
viscosity #, the heat conductivity k, the specific heat cp, the density and temperature are normalized to their 
free-stream values, and the x and y coordinates are referred to the model length L. Exactly these variables 
are presented in the graphs unless otherwise specified. 

The FVSL equations describe the entire flow region between the plate and the SW. In addition to all 
terms of boundary-layer equations, they include a conservation equation for momentum projected onto the 
normal to the plate. All terms of the Euler equations are also retained here. 
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We consider Mach and Reynolds numbers for which a thin SW forms, since only in this case can the 
generalized Rankine-Hugoniot  relations be used as boundary conditions for the SW [17]: 

us = cos 2/3(1 + ks tan 2/3) - #s(1 - tan 2/3) cos 3 / 3 0 u  
Re/; sin/3 Oy' vs = us tan/3 - ks tan/3, 

1 Ps = 7M 2 + (1 - k s ) s i n 2 / 3 -  2#s sin /3 cos /3 0u 
- -  Re/; 0--y' (2) 

M2 ~ cos/3 [ 0 H  1 - P r  2 0U 2 ] Cpr162 Pr 
crsRe/; sin /3 -~y 2 (7-1)Mc~ ] ' ks=l'ps 7 =  c~oo' as=--.#s H s = l +  

Here H is the total enthalpy, /3  is the SW angle, 7 is the adiabatic exponent for the free stream, and the 
subscript s indicates the flow parameters  behind the SW. The  integral condition of equal mass flow on both 
sides of the shock wave is used to determine the SW shape ys(X). 

The slip and t empera tu re - jump conditions are used as boundary conditions for the plate [18]: 

w' ( 2 -  ~T)7# v - , -  OToy w" (3) (2 - au)#  Ou T = T w + 2 . 5 a T ( 7 + l ) R e / ; P r . / _ O g , ,  uw = 1.252 o t " ~ - R ~  Oy 

Here ~ is the slip coefficient and (~T is the accommodation coefficient. 
For a convenient calculation of system (1), we introduce a new independent  variable 9 along the normal. 

so that  the difference grid has a constant number  of steps between the body and the SW. Furthermore, new 
dependent  variables are in t roduced by normalizing all parameters to their local values behind the SW: ~ = x. 
it = y/ys(x) ,  fi = u/us,  f, = v/vs,  'i" = T/Ts ,  P = PIPs,  # = P/Ps, and/2 = #/#s .  Then,  the momentum 
and energy equations in the t ransformed variables ~ and ~) can be writ ten in the s tandard form for parabolic 
equations (the bars are omit ted) :  
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ai-~x + bi ~y  + -~y C i T y ]  
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The continuity equation takes the form 

Psus-~x + --Ys - y u s  tan 13 + Vs Oy ] = 0; 

the equation of state is 

+ P s  OP ] 
y--~ -~y ( - yusu tan /3  + VsV) . 

(5) 

P = (1 / (7M~) ) (psTs /Ps )pT .  (6) 

The parameters behind the SW now enter into the basic equations (4)-(6) as unknown coefficients, and the 
boundary conditions for the SW become u = v = T = p = 1 for y = 1. In the computat ions,  viscosity was 
approximated by Suther land 's  law. 

In i t i a l  C o n d i t i o n s .  Analysis of the experimental data  of [1, 4-6] showed that  at the sharp edge, at the 
end of the merged layer, and at the beginning of the region of strong shock-wave-boundary-layer interaction, 
viscous flow occupies the entire region between the plate surface and the undis turbed flow, and there is no 
distinct inviscid flow in this region. Therefore, we describe the entire disturbed region by boundary-layer 
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equations, by replacing the SW by a discontinuity surface, although the SW thickness in this region is on 
the same order as the boundary-layer thickness. The latter assumption can introduce a certain error in a 
solution that is used as the initial condition for x = x0. However, because of the parabolicity of the FVSL 
equations, this error rapidly decays downstream. For x = x0, the system of FVSL equations (1) can be reduced 
to ordinary differential equations using the transformation ~ = x and 7/ = yv"R--~]V~ , which is typical of 
boundary-layer flows with a uniform external flow. In the variables ~ and 77, the system of equations for the 
initial cross section x = x0 takes the form 

j ~ jdu d { dP 
dJ 1 du) o, o, 

dr/ dr/ \ dr/] dr/ (7) 

c j d T  1 d (kdT~ (du~ 2 1 
" dr] Prdr/ \ d-~'~] - ( 7 -  1)M~# = 0 ,  P -  pT. \ dr/] 7M~ 

We solve system (7) subject to the boundary conditions 

71 = 0: J = 0, u, T are calculated from (3), 

77=r/s: u = u s ,  v = v ~ ,  T = T s ,  P = P s .  

Here r/s (the SW detachment) is found from the mass balance relation for the shock layer under the assumption 
of a straight SW in the interval 0 <~ x ~< x0. 

Dif ference  S c h e m e  a n d  A l g o r i t h m  of So lu t ion .  The nonlinearity of system (4)-(6) requires an 
iterative approach which reduces the problem within one iteration to a sequential solution by the sweep 
method of the difference boundary-value problems approximating equations (4)-(6): A, Wn+I + B, Wn + 
C,W,_I + D,  = 0. Here n is the difference-grid node number with respect to the y coordinate. The boundary 
conditions on the body are obtained by writing the slip and temperature-jump conditions (3) in terms of 
one-side differences for three points. Moreover, for the body surface, we add the condition OP/Oy = 0, from 
which we obtain an additional condition for density using the equation of state (6). The SW conditions now 
reduce to the equality W = 1 for all parameters. 

The algorithm of solution of the FVSL equation is as follows. We first solve the ordinary differential 
equations (7) near the leading edge. The Mach cone angle is used as the initial value of the slope/3 in finding 
the SW position. The thus-obtained profiles u0, v0, To, P0, and p0 are set as the initial conditions in the cross 
section x = x0. 

Then, the viscous shock-layer equations are solved by the marching method with respect to the x- 
coordinate. We first determine the velocity components and temperature from the equations of motion and 
energy. Next, the density is determined from the continuity equation, and finally, the pressure is found from 
the equation of state. Generally speaking, this problem is not correct, since system (4)-(6) is not rigorously 
parabolic, and disturbances can be transported upstream along the subsonic part of the boundary layer. Some 
regularization is needed to suppress these disturbances. The method used in the present work is based on the 
idea of sublayer approximation [19], according to which the term OP/Ox is calculated outside the subsonic 
region and is introduced in this region as a constant quantity. 

For the values of u, v, T, P,  and p obtained for the given value of x, the condition of/the mass-flow 
conservation with passage through the SW is verified. If this condition is not satisfied for the given values. 
the SW angle ~3 is corrected by a small quantity e. The SW parameters are calculated from the new value 
of/3, and the above algorithm of solution for system (4)-(6) is used again. 

The solution of the problem yields the velocity, temperature, density, and pressure profiles over the 
entire shock layer. They are used to calculate the skin-friction coefficient on the plate surface, 

Ou / 0.Sp~ U~, C/= #-~y y=o 

and the heat-transfer coefficient St (the Stanton number). The latter takes into account the "sliding-friction" 
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energy transfer under the slip boundary conditions, as in [16]: 

(k OT 

C o m p u t a t i o n  R e s u l t s .  Several test computations were carried out to validate the algorithm and the 
results obtained. 

The dashed curve in Fig. 2 shows the velocity values obtained analytically by Hantzsche and Wendt 
and borrowed from [18] for a laminar boundary layer on a plate positioned streamwise in a supersonic flow 
(Moo = 5, ReL = 5 �9 10 s, Pr = 0.7, and Tw = Too). The solid curve in this figure represents the velocities 
obtained in the present work using the algorithm of solution for the FVSL equations in the cross section 
z = 0.17. Evidently the difference is less than 7%. In the given variant of computation (Moo = 5), the 
boundary layer amounts to only 1/8 of the shock layer, and comparison of u profiles is presented for this 
region, i.e., up to y ~ 0.005. 

The flow field on a fiat plate in the merged-layer regime is experimentally studied by McCroskey et 
al. [4]. The results are obtained based on a combination of several probing and optical methods and surface- 
pressure measurements. The density was calculated using combined measurements, and its accuracy, as is 
noted in [4], is within +10% in the strong-interaction region and within 4-20% upstream in the merged layer. 

Figure 3 shows density profiles in the cross sections x = 0.14 and 0.21 (curves 1 and 2). For M~ = 24.5, 
Re1 = 3.94- 105 m -1, To = 2000 K, and Tw = 295 K, the cross section z = 0.21 corresponds to the strong- 
interaction region and the cross section z = 0.14 to the merged layer. The solid curve shows the density 
profiles calculated from the FVSL equations as functions of the dimensionless coordinate y normalized to its 
value at the SW, and the dashed curve represents the results of [4]. The disagreement between the results 
can be explained by the fact that,  on the one hand, both cross sections are located in the region of transition 
from the merged-flow regime to the strong-interaction regime, i.e., in the region of flow restructuring, and on 
the other hand, neither of the above-mentioned experimental techniques is a direct method. 

Figure 4 shows a comparison of the SW detachment distance at Moo = 24.5, Rel = 5.9. 105 m -1, 
To = 2000 K, and Tw = 300 K with the data of [4]. The dot-and-dashed curve indicates the SW position 

254 



g 

0.04 2 3 

0.02 

0 1 () 20 30 40 

Fig. 6 

0.008- 

0.004 

0 014 ' 0:8 X 

Fig. 7 

calculated from the formula of [15], and the remaining notation is the same as in Fig. 3. The disagreement is 
within the experiment accuracy. 

Pan and R. F. Probstein [14] present approximation formulas for the pressure and heat-transfer 
distributions on the surface which correspond to the solution in the strong-interaction region (subscript SI): 

Psi = (0.554Tw/To + 0.0973)M~ v~ /Re~ ,  
(s) 

Sts  = (0.36srw/r, + 0.06a4) 

Here C is the Chapman-Rubezin constant for a linear dependence of viscosity on temperature [201. It is 
important that the constant 6" in formulas (8) makes a substantial contribution to the P and St distributions. 
However, the value of this constant varies greatly (--,15-20%), depending on how it is calculated: in terms of 
the reference temperature following Cheng's definition [20] or using values of ~ and Too [14]. 

Figure 5 shows a comparison of the values of Stsl  and Psl (dashed curves 1 and 2, respectively) with 
those calculated in the present paper (solid curves 1 and 2) for the same flow conditions as in Fig. 3. The 
Chapman-Rubezin constant is 0.72, as in [4]. A small difference in pressure along the surface is observed only 
near the boundary of the merged layer at x = 0.135, which corresponds to the rarefaction parameter V = 0.15. 
Solid and dashed curves 1 merge in the region of strong interaction which is extended up to the plate end (the 
parameter Xoo = v~M~/v~-'e"~x >> 4 everywhere). The difference in heat fluxes is within 10% on the main 
part of the plate and within 18% near the merged layer edge. It should be noted that the marching method 
implies that there is a zone of influence of the initial solution of the problem. 

Figure 5 shows the calculated Stanton number (curve 3) for the same condition but beginning from the 
cross section x0 = 0.2, in contrast to the available computations, in which x0 = 0.1 (solid curve 1). Curves 1 
and 3 are practically coincident beginning with x = 0.4. This means that the influence zone of initial data is 
about 0.2. It should be noted that the value of St here, as was predicted by the strong-interaction theory, is 
practically inversely proportional to z s/4 rather than to x/~, as in the classical boundary-layer theory. 

Metcalf et al. showed [7] that the SW strength (i.e., Pmax/Poo) depends only on the parameter 
MooC/Re:: ,-, Kn= (Kn~ is the Knudsen number), at least at a distance of 100 mean free paths from the 
leading edge of the plate. A universal curve of the SW strength versus Kn~ for Knudsen numbers of from 
0.001 to 0.2 was plotted using the experimental data of [5-7]. The region of applicability of the FVSL model 
does not allow computations for Kn~ > 0.0015, but within Kn~ "- 0.001-0.0015, the difference between the 
Pmax/Poo values in the present work and in the universal curve is less than 3% for Re~ ~ 2.  104-2 �9 105 and 
Moo > 20. 

Another validation of the suggested algorithm of solution for the FVSL equations is the good agreement 
between the calculated density profiles and those measured by the electron-beam fluorescence technique [21]. 

The advantages of the theoretical approach over the experimental methods include not only the 
possibility of obtaining a complete picture, i.e., all flow parameters, but also the possibility of conducting 
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rapid and easy parametric studies by varying the governing parameters. Basic computations were performed 
by a scheme that was in good agreement with the experiment of [21] for Moo = 21, ReL = 2.1.10 s, L = 0.36 m. 
To = 1100 K, T,,, = 310 K, x0 = 0.1, Pr = 0.7, and a,, = a T = 0.8. The computations were carried out on 
a grid with 160 points along the normal and 900 points in the longitudinal direction (Ax = 0.001). This 
computation scheme took 20 min of computer time on an IBM PC/AT 486. A twofold increase in the number 
of grid points in both directions changed the solution by less than 1.5%. 

The slip flow changes markedly the velocity and temperature profiles at the plate surface. Therefore. 
the question arises of when the slip and temperature-jump boundary conditions should be used. Rudman and 
Rubin [16], using calculations of the merged layer near the leading edge of a plate, showed that it is necessary 
to use the slip boundary conditions for Xoo/M 2 = v~Moo/Rv/'g~'~ > 0.1 At high Mach numbers, these values 
are observed in the merged layer and in the region of transition to the strong-interaction regime, i.e., in 
regions in which the FVSL calculations begin. Thus, the slip and temperature-jump boundary conditions 
were used in the present paper for all variants. Tsien [22] presents tables of the slip coefficients a~, and the 
accommodation coefficients aT for air. They show that for metals, a,, = 0.79-1.0 and aT = 0.80-0.97. The 
slip and accommodation coefficients for the basic variant are within these limits [22] and are chosen from the 
condition of the best agreement with the experiment of [21]. 

Figure 6 shows profiles of the dimensionless temperature along the normal for Moo = 15, 21, and 25 
(curves 1-3) in the cross section z = 0.4 (all remaining parameters are the same as in the basic variant). The 
triangles on the abscissa indicate the Tw values. One can see that in the major portion of the viscous layer. 
the temperature in the viscous region is considerably higher than that in the inviscid region, because of the 
transformation of dissipation effects. The portion of inviscid flow behind the SW decreases with an increase 
in Moo: it is about 1/3 of the shock layer for Moo = 15 and only 1/6 for Moo = 25. Computations within 
the framework of the FVSL model can be carried out for both higher and lower Mach numbers. It should be 
noted, however, that for Moo < 15, the inviscid portion is 3/4 of the shock layer (see Fig. 1). 

In supersonic flow, the inviscid-flow region decreases with an increase in Moo, and the SW approaches 
the body surface. At hypersonic speeds, the boundary-layer thickness is significant, and its increase with an 
increase in Moo can compensate for the decrease in the inviscid region. Therefore, the SW-detachment distance 
was practically the same for the Math numbers examined. Figure 7 shows the Mach-number effect on the 
heat-transfer coefficients (notation is the same as in Fig. 6). As might be expected, the St values increase 
monotonically over the entire plate length with an increase in Moo. 

The Reynolds-number effect on various flow characteristics are shown in Figs. 8-10. Curves 1-5 
correspond to ReL = 8 .  10 4 , 1.  10 5, 2.1. 10 5 , 4 .  10 5 , and 8 .  10 5 , respectively. Figure 8 shows normal 
temperature distributions for various ReL in the cross section z = 0.4. The distance to the SW decreases 
with an increase in ReL, and the temperature profiles T are "pressed" to the plate. The Reynolds-number 
effect is significant over the entire shock layer, in contrast to the Mach number, whose variation exerts a more 
appreciable effect on the temperature distribution near the plate surface (see Fig. 6). The St values (Fig. 9) 
decrease monotonically in all cross sections with an increase in ReL. 
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Figure 10 shows the normal-pressure distributions for various ReL in the cross section x = 0.4. 
Evidently, the pressure along the normal varies within 20% mainly in the inviscid region behind the SW. 
For small Re/,, these changes in the boundary layer reach 4%. 

The parametric studies showed that the FVSL model adequately describes hypersonic flow around a 
plate for both high (Rex "~ 106) and moderate Reynolds numbers (Rex ,'- 104, Re~ is the local Reynolds 
number). The computations can also be carried out for lower ReL but in a smaller domain in the x direction. 
since the initial cross section should be located at the boundary between the merged layer and the strong- 
interaction region, and this boundary moves downstream from the leading edge with a decrease in the Reynolds 
number. 
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